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Various numerical methods for solutions of Einstein equations are presented and dis- 
cussed. The numerical schemes are classified according to the equations (evolution versus 
constraint) solved and according to the coordinate conditions used. The numerical methods 
are compared by using them to study systems with cylindrical symmetry for vacuum 
(Einstein-Rosen waves), matter collapse, and cosmology (perturbation of Friedmann 
Universe). 

I. INTRODUCTION 

In recent years there has been a growing interest in numerical solutions of Einsteins’ 
equations. Many astrophysically interesting situations involve asymmetric dynamic 
general relativistic strong fields for which the standard analytic (perturbation) methods 
do not yield a solution. In particular two related questions of current great interest 
are the generation of gravitational waves and the gravitational collapse and formation 
of black holes. It is hoped that like in other branches of physics and astrophysics 
numerical methods could yield a solution to these questions [ 11. 

May and White [2] have written a numerical code for a general relativistic spheric- 
ally symmetric collapse. Due to the spherical symmetry of their solution the dynamical 
character of the general relativistic equations disappears and along with it any 
gravitational waves and the numerical difficulties associated with them. Epply and 
Smarr [3, 41 have solved numerically the problem of axisymmetric black-holes colli- 
sions and Wilson and Smarr [5-71 have calculated numerically axisymmetric perfect 
fluid collapse to a neutron star. In these configurations there is one mode of gravi- 
tational wave present. While the results of these calculations are very impressive 
and are of great astrophysical importance, there are still a number of open questions 
involved in numerical general relativity. 

As is well known, general relativity on a lattice (numerical grid) is an overdeter- 
mined system of equations for the geometry variables. (The system is not over- 
determined in the continuum case by virtue of the Bianchi identities, however these 
cannot be satisfied on a lattice.) This together with the usual coordinate freedom of 
general relativity introduce an additional arbitrariness when constructing numerical 
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schemes. The equations are divided into evolution (hyperbolic) and constraint (elliptic) 
equations. Numerical schemes can be classified according to choices between these 
two types of equations. Such a classification is presented and different schemes are 
compared. The standard numerical freedom, the grid structure, and possible variations 
of the grid spacing during the numerical solution by use of grid velocity are also 
discussed. 

In this work I study the behavior of cylindrically symmetric general relativistic 
numerical schemes. These are one spatial dimensional schemes, which, in contrast to 
the spherical configurations, do include gravitational waves. (In general two modes 
of gravitational waves are possible with this symmetry, but by imposing additional 
mirror symmetry only one mode is allowed.) These schemes are, therefore, in an 
intermediate stage between the spherical May and White [2] code and the two- 
dimensional codes of Eppley and Smarr [3,4] and Wilson [5-71. They can serve as an 
excellent arena for comparing different numerical methods and between the different 
arbitrary choices which were described earlier. The penalty involved in the usage of a 
cylindrical system is the associated difficulty with the behavior at large Y (cylindrical 
systems are not asymptotically flat). 

The general formalism and methods for numerical solutions for general relativity 
are discussed in the second section. This discussion is limited to methods based on the 
ADM (Arnowitt, Deser, and Misner) [8] formalism. The equations for a cylindrical 
symmetry are derived in the next section. This is followed by a detailed discussion of 
the numerical methods used. Results for propagation of waves in vacuum are presented 
and compared for various schemes. It is found that the fully constrained schemes are 
the best from the numerical point of view, even though it was possible to derive 
reasonable solutions using other methods. Finally, results of cylindrical matter 
collapse and of evolution of cylindrical perturbation on a Friedmann Universe are 
shown. 

II. GENERAL FORMALISM 

A general relativistic hydrodynamic problem involves the solution of the Einstein 
equations for the geometry variables together with the energy-momentum conserva- 
tion equations and the equation of state for the matter variables: 

6, = Tuv > (1) 
Tu”,, = 0, (2) 

P = P(P, e>. (3) 

G,, and TLly are the Einstein and energy-momentum tensors and p, n, e, and p are the 
total density, baryon number density, and internal energy per baryon and pressure, 
respectively (p = n(1 + e)). In our units 855-G = c = 1. 

A numerical Cauchy problem [19] in which the values are specified on an initial 
hypersurface and their time evolution is calculated is best formulated using the ADM 
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formalism [8]. Space-time is sliced into a foliation of three-dimensional, constant t, 
spatial hypersurfaces, each of which are described by a three metric c3)gii (i, j = 1, 3; 
the superscript (3) will be omitted in the following discussion) and its extrinsic curva- 
ture tensor Kii. The foliation is determined by 01, the lapse function, and the coor- 
dinate transformation between two infinitely close slices is determined by the shift 
vector p. The general line element is 

ds2 = -a2dt2 + c3’gii(dxi + /3”dt)(dxj + pdt). (4) 

Using the identity 

(5) 

project Eq. (1) along nun”, ny(&“ - n%,), and (6,“ - I~vI~)(&~ - nvnj) respectively to 
get P, 361 

R - KjiKJ + K2 = 2c2[Ttt - 2T# + Tijs”13j], (7) 

(Kj” - 8;K),i = -~L-‘(T,~ - Tjkpk), (8) 

where w is the normal to the three-dimensional, constant t, hypersurfaces, K = 
Kt, Rji is the three-dimensional Ricci tensor and 1 denotes covariant differentiation 
with respect to the three metric. These equations can be divided into evolution 
equations [(5) and (6)] and constraint equations [(7), and (S)]. The former determine 
the time changes of the geometric variables, while the letter impose constraints on 
them within a given hypersurface. 

There are 16 geometric variables (gij, Kii , fli , CY) and 16 geometric equations 
[eqs. (5)-(S)]. However, the coordinate freedom in general relativity allow us to freely 
specify four of these variables. This is naturally done in the ADM formalism by 
specifying a and /z?. The resulting 12 variables have to satisfy 16 equations. Although 
the system seems to be overdetermined, four of the equations are satisfied, in the 
continuum case, by virtue of the Bianchi identities. However, this relation breaks 
down in a finite-difference scheme 137,401. In such a case the equations are written on 
a spatial and temporal lattice and due to the noncommutative nature of finite-diffe- 
rence derivatives all the equations cannot be satisfied simultaneously in a trivial way 
(for example, to the same order in dx and dt). This leads to a serious ambiguity in 
finite-difference general relativity. 

Before discussing the arbitrary choice between constraint and evolution equations I 
shall recount the geometric variables. In general there are 8 + 2Nmode geometric 
variables. Nmode is the number of modes of gravitational waves possible in the 
configuration which is studied. (There are no possible modes in a spherically sym- 
metric configuration; one in a configuration with a plane reflection symmetry and two 
in the general case.) 
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Independent of the symmetry of the system one can use the coordinate freedom to 
reduce the number of free gravitational variables [5, 8,131. The basic physical motiva- 
tion is to reduce the number of evolution equations to fit the degrees of freedom of 
the system, while the numerical motivation is to simplify the structure of the equations 
involved. Such a procedure eliminates a number, NCoolp (up to four), of geometric 
variables by introducing elliptical equations (coordinate conditions) for (x and p. 
(From a simple numerical point of view this approach has advantages since such an 
elimination can lead to great simplification of Rif and to a simpler set of equations.) 
This can be done by imposingf(gJ = const on the initial values and choosing OL and 
r[; that af /at = 0 later [22]. For example g,, = 0 (for a particular kj) and agkj/at = 

It is possible to evaluate the constraint equations for covariant (in the three- 
dimensional sense) quantities like 4 = (det gij)1/3 and W, the vector part of the 
extrinsic curvature tensor [g-12]. Equation (5) separates into an equation for C$ and 
an independent simplified set of evolution equations for the “bare” metric & = $-lgij . 
However such a separation does not occur for the “bare” (i.e., transverse traceless) 
part of Kji. The latter fact makes such a scheme less attractive for practical numerical 
purposes. 

An alternative approach is to solve the constraint equations for some of the variables 
in a noncovariant manner [5]. This leads to the following relations between the 
equations sblved: 

where iVeVOr and Neons are the number of evolution and constraint equations solved. 
Different numerical schemes can be classified as follows: 

free evolution [4, 33, 391: iv -0 cons - 
(Partially) constrained evolution: (1 d Neons < 3) &Jns = 4 
fully constrained evolution [5, 391: New1 = 2Nmode 

chopped evolution [37]: Free or partially constrained evolution which 
is fully constrained every fixed time interval 

covariantly constrained evolution: Eq. (9) is satisfied as an inequality; the 
constraints are solved for covariant quanti- 
ties. 

A fully constrained evolution scheme has the nice physical property of correspond- 
ence between the number of hyperbolic equations and the number of physical degrees 
of freedom. It should be stressed that the coordinate conditions on a! and j3” are an 
essential part of a fully constrained scheme. One has to use the full coordinate freedom 
to eliminate Ncoor = 4 geometric functions. The specific choice of a coordinate 
system is not determined uniquely. It also cannot be defined in a covariant way. A 
covariantly constrained evolution, which uses York’s procedure [lO--121 or equivalent 

SSI/35/2-S 
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methods, can be looked at as a limiting case of a chopped evolution for which the 
constraints are employed in a specific way. 

The hydrodynamic equations are given by Eq. (2). For a perfect fluid, Tvu has the 
form: 

K” = (p + p) u“u, + 6,“~ (10) 

where U” is the four velocity. When projected along ~,a”, u,(Q - u”u~), and (SiU - uyui) 
(8,j - z#), respectively [6, 141, Eq. (2) becomes analogous to the Newtonian 
hydrodynamic baryon number, energy, and momentum conservation equations: 

g + +> (NVi) = 0, 

$ + & (lw) + p & ((-CJ’g)l/Z utv) + p; ((-(Qg)1’2 u’) = 0, (12) 

2 +&g/q + (-(4,,1/2?& f fck&Ys$ = 0. (13) 

si = (p + p) ui is the momentum density, Vi = z&/u” is a three-dimensional velocity, 
and N, E, and & represent n, e, and si multiplied by (-c4)g)1/2 ut. (Projection of 
Eq. (2) along nU and into the three-dimensional, constant t, hypersurfaces yields a 
different set of hydrodynamic equations which have no simple physical interpretation.) 

The matter terms in the geometry equations [Eqs. (6)+8)] become 

glt^jTi, = -&(V f B’, + .&.I - p) &i, (14) 

LU-~(T,, - 2T,@ + T&Pj9) = (p + p)(w”)’ - p, (15) 

-w’(Ttj - Tj,@) = LX& . (16) 

Cylindrical Symmetry 

I use cylindricalcoordinates(t,r,z, 9)) with -co < t c co,0 < r < co, - co <z < co, 
and 0 < v < 27r. There is no dependence on z and q.~ The matter may rotate 
around the symmetry axis but we do not admit nontrivial z motion (V = V”(r, t)). 
This excludes generation of Jordan-Ehlers-Kompaneetz [15, 161 waves and enables 
us to set g,, = g,, = 0 and p” = 0. When the matter is not rotating (or in the vacuum 
case) we can set g,, = 0 as well. In a rotating configuration K,” # 0 and in general 
we cannot set g,, = 0. However, by a suitable coordinate transformation we can set 
g,, = 0 on the initial slice. We choose now w = p to satisfy 

w’ = 2aK,m (17) 

with arbitrary boundry conditions (for convenience we can set ~(0, t) = 0). Substitu- 
tion of Eq. (17) in Eq. (5) gives g,, = 0 and the three metric remains diagonal 

ds2 = - ol*dt 2 + a2(dr + /I dt)* + d2dz2 + c2r2(dg, + w dt)“. (18) 
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The geometric equations (5)-(8) become 

xi = -aaKTc + (pa)', 

2 = -ci&(K - K,' - K,") + fib', 

(19) 

(20) 

;: = -acK," (21) 

Kg2 = /?K;' - & (a$&) + cy [K," - ;(p -p)] , (23) 

zq = SK;'- w'Kmr - -& (+y) + a [KK~~ - SJV" + w) 

- ; (P -P)] 9 

ri," = a[KK,' - S,(V' + /?)I, 

1 d’ ’ -- 
i 1 aif a +-&pg)’ + K:" + Km"= f K,'Kw" f KTKqr 

= - KP + d(4” - PI> 

$-("%rKy)' - f (+jKww - f(cfK)' = cd&, 

-&d-r Kg")' = a&. 

We use ,!I = /3’, ( ‘) denotes a/at and ( )’ denotes ap. 
The hydrodynamic equations become 

N + (NV’)’ = 0, 

(24) 

(25) 

(26) 

(27) 

(28) 

6 + (lw)’ + p((- (4)g)l:z 24”) + p(( - (4)g)1/2 22 VT)’ = 0, 
(29) 

(30) 

+ (8’ - /3$)(1 - 2w g) s, + (CL - w $,(I - 28%) S,) = 0, (31) 

& + (S,V’)’ = 0. (32) 
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Coordinate Condition9 

The coordinate conditions are specified by cx and /P. This has already been partially 
done in Eq. (17) in which w = j3~’ was specified so that the metric remained diagonal. 
(This condition is important only for rotating matter configurations. In all other 
configurations Krrn vanishes and Eq. (17) is satisfied trivially.) 

01 determines the foliation of space-time. The choice K = 0 (on all spatial slices) is 
called maximal slicing [9, 171. This condition can be satisfied if K = 0 on the initial 
slice and R = 0 later. Using Eq. (6) 

$=j3”Ks,-$+ [ a K2 + R + Qp - $p - (p + p)(@“l; 

in cylindrical coordinates: 

E=/lK’- -&(ga~)‘-a[$(-g’+--$(~)’ 

+ 2 - K2 + $p - $p + (p + p)(c~u’)~] . 

Equation (34) is used as an elliptical equation for LX. The maximal slicing condition is 
useful in collapse calculations since it slows the evolution in regions that approaches 
a singularity [ 18, 19,221. In addition, it eliminates one geometrical variable. 

In most cosmological problems it is impossible to choose maximal slicing 1381. (In 
a Friedmann Universe.there is only one maximal slice-the three-dimensional hyper- 
surface at maximal expansion.) Another convenient choice is a constant K (constant 
mean curvature) slicing. Again Eq. (34) becomes an elliptical equation for IX with 
ft = const [43]. (Note that it is not yet concluded whether such slices exist in the 
general case [20,21]). 

A covariant choice of/P was suggested by Smarr and York [22]. Their coordinate 
condition is 

[-g g’:3g”‘] ,i = 0 

which leads to a second-order elliptic equation for ,B. When combined with the 
maximal slicing condition [Eq. (34)] and for nonrotating systems (w = 0) this gives 
rise to 

2 - [&(a&erp)]’ - /i? [$ (4)’ + ; (%)‘I + dK,” - as, = 0. 
3 (36) 

This coordinate condition attempts to minimize the coordinate shear and it follows 
the spirit of York’s [IO-121 covariant treatment of the constraint equations. However, 
it does not lead to any simple algebraic elimination of geometric variables. 

1 These are also called gauge conditions [I 31. 
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Out of the many possible “simplifying” coordinate conditions I have used, iso- 
thermal coordinates [512 a = b which lead to 

/z?’ = a(2K,.* + K,” - K) (37) 

and the canonical coordinate condition bc = 1 

/? = olr(K - K,‘). (38) 

The importance of the second condition is in its potential simple extension to general 
cylindrical cases (i.e., with two modes of polarization) and to two-dimensional axi- 
symmetric rotating configurations. Note that in this case a = (det gij)li2/r = +3/2/r; 
however, solving the Hamiltonian constraint for a is not equivalent to evolution of the 
bare metric gij and calculation of 4 from the Hamiltonian constraint. Other possible 
choices, along the same idea, are bc = a, c = 1, etc. 

The trivial coordinate condition p = 0 was studied as well. When combined with 
maximal slicing it yields 

(39) 

and it could be considered therefore as a “simplifying” gauge. However, this relation 
was not used to eliminate a metric function in the numerical procedure. 

111. NUMERICAL METHODS 

Our finite-difference scheme is second-order accurate in space and first-order 
accurate in time. (We use a staggered temporal grid structure, so that in principle our 
scheme can be considered as second order accurate in time as well. However, there 
was no attempt to retain this accuracy systematically. The spatial grid is staggered and 
is described in Fig. 1 [3, 61. The temporal staggering is described in Fig. 2. Loosely 
extrinsic curvature components and the shift vector are calculated at t + $dt points 
relative to the metric components and the lapse function which are calculated at 
integer dr intervals, and in the same way momenta and velocities are calculated at 
t + &dt points relative to the density, pressure, and specific energy. 

In the following discussion the numerical grid points will be denoted by capital 
letters, while the coordinates are denoted by lowercase letters. 

Finite-D@erence Scheme,for the Evolution Equations 

A general form for both hydrodynamic and geometric evolution equations is 

j = (Vy)’ + xy + source (no linear terms in y). (40) 

2 Isothermal coordinates which were first introduced to numerical relativity by Wilson [5] are 
sometimes denoted [ 13, 391 as Wilson gauge. 

5g1/35/2-9 
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gJ 
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FIG. 1. The spatial staggering of the various variables. Note that only the variables S, , V, , 8’. 
and V, are defined on the axis (u = 0). 

V stands for -(P - V,), V, is the grid velocity (note the minus sign) in the hydro- 
dynamic equations and for @ + V,) in the geometric ones. The source term may 
include terms like y2 but all the linear terms in y are included in xy. (Equations (13- 
(17) are cast into this form by addition and subtraction of y@ + V,)‘.) 

The finite-differencing scheme follows Wilson’s approach (compare to [5, 61 for 
details of the numerical method) which is motivated by methods developed for 
Newtonian hydrodynamics. The first term (the flux term) is evaluated so that y is a 
conserved quantity. A weighted average of first- (“donor” type) and second-order 
terms is used. The weighting factor is such that the flux is second order accurate when 
the gradient of y is small and it is of “donor” type when the gradient is large. This is 
done to handle hydrodynamic shocks but it proves to work equally well for geometric 
quantities. 

f&+1/2 = dt v,+,/,[U - 471+1/2 + v,ls WI 
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nic+ric functions 

c 
I 

calculate new 
metric determinate 

conditions for the 

FIG. 2. The flow chart of the main evolution loop. The temporal staggering of the variable is 
defined implicitly by this chart. 

where 

,1, = I(YI+~ - YM YI+~ I + I YI Ill 
I 

for I(YI+~ - YMI YI+, I + 1~9 III < Wmax 31 !F 
1 for I(YI+~ - YIMI Yr+1 I + I I’1 111 > wnax = $5 

@lb) 

and 

The overall finite-difference form of Eq. (40) is 

N+l = @x1+1,2 
Yl 

- flux~+,)/dr, + (1 + &&XI) yrN + dt sourcer 
(1 - WXI) (42) 
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Hydrodynamics 

The hydrodynamic equations, Eqs. (29)-(32), are supplemented by the equation of 
state. For simplicity we use 

p=(T- 1)e. (43) 

In order to handle hydrodynamic shocks we add an artificial viscosity q to the pressure 
(see, for example, Richtmyer and Morton [23] and Wilson [14]). It is treated as part 
of the pressure and it is added to p in the geometric as well as in the hydrodynamic, 
equations. q is defined as 

ClI = 

/ 

l%,U’~( b;+ly - I’,&,.,)” , VI,,,, - l/i-1,2 > 0, (fir - 111-l) VI-l,2 < 03 
and (nI,, - nr) VI-, 2 < 0; (44) 

0 otherwise. 

I is a constant of order unity (I = l-2). 
The second and third conditions which are added to the usual shock condition 

P3, 141, 
VI+1 12 - V&l/, > 0, (45) 

are needed in gravitationally collapsing configurations. 
Equation (29) is solved for N. It is later resealed by T,dF,/r,dr,; r”, = rl + V,,dt, in 

order to take care of corrections due to the grid motion. Similarly Eqs. (31) and (32) 
are solved for S, and 5’: Following Wilson [14], the special form of p is used to 
combine the p (but not the q) part of the third and fourth terms in Eq. (30) with the 
first and second ones and to solve the equation for [( -(l)g)l:* u”] Er-l; this is resealed 
later with the needed powers of -c4)g and ut and by Fldr”,/r,dr. 

Geometry 

The various choices for evaluation of the geometric variables are: 

a-solved from Eq. (19) (evolution) or from Eq. (26) (Hamiltonian constraint). 
b-Eq. (20) (evolution)-only when relevant, i.e., for b # a, b # l/c, etc. 
c-Eq. (21) (evolution) or (26) (Hamiltonian constraint). 

K,‘-Eq. (22) (evolution) or (27) (momentum constraint). 
Kzi-Evaluated as K - K,’ - K,“. 

K,*--Eq. (24) (evolution) 
K,‘-Eq. (25) (evolution) or (28) (momentum constriant). 

(Y. and ,@ are solved using Eqs. (34)-(38), depending on the particular coordinate 
choice. 

Grid Velocity 

In calculations involving matter motion it is necessary that in particular, in gravita- 
tional collapse calculations, the numerical grid will follow, to some extent, the matter 
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motion. Otherwise, the matter will be concentrated in one grid cell and the computa- 
tion could not proceed. This can be done by a LagrangiarC’ coordinate choice /3’ = 
V [24]. However, in order to maintain the coordinate freedom for the geometry Wilson 
introduces a grid velocity [5] which follows the matter motion and prevent this 
phenomenon. A grid point I-, moves during a time step dt from r, to r, -- V(,,dt, 
where V,, is a freely specified function. A term V,F’ is added to the right-hand side of 
the evolution equations (p =) to describe the change F, = F(r,) ---f F(r, + V,,dt). (In 
the hydrodynamic equations we subtract V, from V’ and later rescale N, E, and Si in 
order to take care of the unnecessary addition of the terms: NI’,’ , etc. which are 
introduced in this way,) 

It should be emphasized that the grid velocity is not equivalent to the shift vector. 
The grid velocity transforms the observer’s (grid points) relative to the coordinates 
from one time slice to another, while the shift vector transforms the coordinates as 
well as the local observation tetrad. 

The grid velocity can be freely specified. The choice Vi, = V,j yields a numerical 
Lagrangian scheme. (The coordinates are not Lagrangian but the grid points are 
comoving with the matter and the flux terms in the hydrodynamic equations dis- 
appear.) Eoth Lagrangian methods (pj = V and V,j = Vj) are not adequate to follow 
the propagation of the generated gravitational waves. The coordinates (or the grid 
points) that follow the matter, collapse with it, and there is no “room”, i.e., no exterior 
vacuum region in which the wave can “freely propagate.” This problem does not 
occur in spherical Lagrangian schemes [2, 25, 261 in which there is no gravitational 
radiation. An Eulerian [3] grid is needed, at least at the outer edges of the numerical 
grid, in order to observe the propagation of gravitational waves. 

A solution for both problems is achieved by specifying the grid velocity in such a 
way that it follows the matter velocity for a few inner grid points while vanishing on 
the outer boundary. In the intermediate region the grid velocity is varied smoothly 
for example by demanding that dr,,, = const Ar, . 

A Lagrangian-Eulerian scheme whose numerical Lagrangian inner part follows the 
matter while sliding on a numerically Eulerian outer grid may be the ultimate solution 
for both problems. Such a scheme is now being studied. 

Boundary Conditions 

A spacelike slice is usually infinite (or at least very large in the case of a closed 
Universe). Our grid is finite and usually limited to 100 (or less) points. One must, 
therefore, provide boundary conditions-or a specific scheme for solution of the 
equations on the inner (axis) and outer boundaries of the numerical grid. (An alterna- 
tive approach, suggested by Penrose [27], is to use compactified space-time.) While 

3 A Lagrangian observer is comoving with the matter. The extension of the definition of an Eulerian 
observer from Newtonian to relativistic hydrodynamics is somewhat ambiguous. In contrast to 
[3, 421 I define an Eulerian observer as any non-Lagrangian observer which is at rest with respect 

to the coordinate system in use. Such an observer is called a coordinate observer by [42]. 
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of gmvilofionol wows 

gravitational wove 

cws linner boundryl- k-outer boundry of the 

numerical grid 

FIG. 3. The exact and the numerical domains of dependence. The exact domain of dependence 
ends at point A, which is usually too short for any significant variation in the configuration. When 
there is no incoming radiation, a simple boundary condition suffices to continue the calculations to 
point B’ at which reflection from the numerical boundary of radiation generated at B begins. With 
a proper outgoing boundary condition the solution can be continued beyond B’. 

the inner boundary conditions can be determined from analytic considerations, there 
are no such rules for the outer boundary conditions. 

In principle, when data is given on a finite initial slice the Einstein equations can be 
integrated only within the domain of dependence [22, 281 of this region (see Fig. 3). 
However, when the exterior is empty and does not contain ingoing gravitational 
waves, one can expect to be able to continue the calculation beyond this domain of 
dependence. It may be continued until the perturbations (such as gravitational waves) 
reach the outer boundary of the grid (employing smooth boundary conditions 
which do not generate gravitational waves). Reflection may destroy the numerical 
continuation of the solution beyond this point. It is very useful to be able to continue 
the calculation further. Boundary conditions which enable the waves to propagate out 
of the grid without reflection are essential for this. The following outgoing wave 
boundary conditions for a functionfis used: 
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a,: =m+1 7 t + dt) = “‘iI, A fh+1 - 4 6 
rI+l - = rl+l A [.fL (1 - $1 +JrN$) ) (464 

A = dt(cx/a - /I) (46b) 

(A = dt(a/u - /I - V,> w h en V, does not vanish on the edge of the grid) where 
Ar, = r,,l - r, . Equation (46) corresponds to propagation of a cylindrical outgoing 
wave along a null geodesic. This condition is used for the extrinsic curvature Kii 
components. Equation (46a) must be modified when the unperturbed value of the 
function t does not vanish at the boundary. For example, a similar expression but 
without the damping factor (r,+l - A)/r,+, is used for the metric component func- 
tions a, b, and c for vacuum cases. (For these quantities it is best to use this condition 
for the two outermost points.) When there is matter, the “static” exterior background 
metric is not asymptotically flat. Usually the contribution of this “static” curvature is 
dominant (compared to the effect of the gravitational waves). Correspondingly, we 
use quadratic interpolation for the metric functions a, b, and c in this case. 

In some cases this interpolation causes instability on the outer boundary. This 
behavior should not happen in asymptically flat space-times. 

The outer boundary condition for (Y(OI = 1) is arbitrary and it amounts to scaling 
of the t coordinate (the situation is different in an asymptotically flat space-time where 
one chooses 01 = 1 so that t will be the observer time at infinity). The inner boundary 
conditions (on the axis) are a(0, t) = ~(0, t) and K,‘(O, t) = K,“(O, t) (these are 
necessary for local flatness) and a’(0, t) = b’(0, t) = ~‘(0, t) = ~‘(0, t) = p(O, t) = 
~(0, t) = 0 (which are necessary to avoid divergences on the axis). 

Time Step 

The time step, dt, is determined by the propagation of gravitational waves [6], i.e., 
it is chosen so that a null geodesic will not advance more than a fractionfg (usually a 
third) of a grid spacing Ar during a single step: 

dt, =A, h/(1 /3~ I + f (!g - 1’ pjp)lp) , 

where the sum C’ is only over cyclic coordinates, i.e., only over v (p” = 0). In order 
to take account of the grid motion p’ is replaced by (/3? + V,). One may note the 
similarity between this formula and the standard relation for a hydrodynamic time 
step: 

& =h&(l VT I + C,). (48) 
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The analogy between the shift vector (coordinate motion) and the fluid flux (matter 
motion) and between the “speed of light,” (a” - C’&sjsj)llZ, and the fluid speed of 
sound, C, , is clear. As the gravitational time step is much shorter than the hydro- 
dynamic one the resulting hydrodynamic flow is very smooth. One can use the hydro- 
dynamic time step in situations in which the gravitational variables are changing very 
slowly. 

Additional limitation on the hydrodynamic time step are discussed by Wilson [6]. 

Initial Values 

The initial values are not completely arbitrary. The constraint equations [Eqs. (7) 
and (8) or (26)-(28)] must be satisfied on every time slice and in particular on the 
initial one. O’Murdacha and York [ 10, 1 I] and York [ 121 suggested two covariant 
methods for solving the initial value problem for strong field cases. 

Another possibility [5] used here is to specify the number, energy, and momentum 
densities and three metric and extrinsic curvature components. The other three (usually 
one metric and two extrinsic curvature components) are solved from the constraint 
equations (the z momentum constraint equation is satisfied identically in this con- 
figuration). The same procedure is done every time step in a fully constrained scheme. 
It is not “guaranteed” that there will always be a solution, and in particular that there 
will be a physically reasonable one. However, for an almost Newtonian initial configu- 
ration such a solution was always found. In cosmological problems these methods 
failed in some cases. The specification of only some of the initial variables can produce 
unanticipated aphysical values in the remaining variables when the constraint 
equations are solved. This difficulty is inherent to all methods. 

IV. VACUUM SOLUTION-EINSTEIN-ROSEN WAVES 

The general vacuum cylindrical solution of Einstein’s equations are the Jordan- 
Ehlers-Kompaneet waves [ 15, 161 (see also Thorne [29] and Piran [30] for discussion). 
These waves have two modes of polarization. The general Jordan-Ehlers-Kompaneet 
waves cannot be described by a diagonal three metric. Both K,.” and K,” do not 
vanish and cannot satisfy Eq. (17) and an analog equation with .K,” simultaneously. 
The same problem prevents the diagonalization of the metric in axially symmetric 
rotating configurations. The line element used here Eq. (18)) can describe only a 
special case of these waves. These are the Einstein-Rosen waves [31] which have one 
polarization mode. The Einstein-Rosen line element is 

d? = ez(Y-*)(-dT2 + dR2) + eWdz2 + R2e-Wdv2 (49) 

with 
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Equation (50a) is a cylindrical wave equation in flat space-time and an Einstein- 
Rosen wave packet can be written as 

With this analytic solution available a cylindrical vacuum system becomes an excellent 
arena for testing various numerical schemes. 

Thorne [29] defined the cylindrical energy (C energy) by geometrical quantities. 
For a metric described by Eq. (18) this equals 

(52) 

The C energy corresponds to the total energy per unit length within a cylinder of 
radius r. (Note that in this units C < n and for G = 1, C < Q.) 

In the following discussion the C energy is used to study the propagation of gravi- 
tational waves pulses and the generation of gravitational waves by collapsing matter. 
As such C energy density is not a unique measure of the gravitational wave energy, 
for there is none [30, 311. There was no attempt to use alternative methods [3, 131. 
Conservation of the C energy is an essential feature of a good cylindrical numerical 
code. 

A numerical solution of the propagation of an Einstein-Rosen wave packet is 
shown in Fig. 4. The initial data is time symmetric (Kji = 0), the coordinates are 
isothermal (grl. = gzz), and the perturbation in a = grr112 has the form 

a(r, 0) = 1 + A,r2 exp (- (TIP) (53) 

with d, r,, and A, such that the perturbation extends over 10-15 grid points. The 
total C energy is 0.65 = 0.20 of the maximal possible C energy. (Calculation with 
C = 1.81 displayed the same behavior.) The other metric function, c, is calculated 
from Eq. (21). The initial C energy density profile has two humps, so what appears, in 
i? TT 9 as a single wave packet is actually composed of two packets. There are two 
outgoing and two ingoing waves. It is interesting that the behavior of the metric 
function, c (or any of the other metric or extrinsic curvature components), does not 
display all the details of the propagation of the wave packet. Those could be observed 
only in the C energy density or in KjiKij. 

The solution presented in Fig. 4 is calculated using a fully constrained scheme in 
which only two functions (a = g,.,.lJ2 = g,,1/2 and K,“) are evolved. The other func- 
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(a) (b) 

(c) 

FIG. 4. A numerical solution for Einstein-Rosen waves using a fully constrained evolution and 
an isotropic coordinates. (a) The metric function xz = g,.,l/z = gla? (b) the metric function c =: 
g,,‘lzl;y; (c) the extrinsic curvature component Kvr; (d) the C energy density, U. 

tions are either eliminated by the coordinate choice r (u = b from Eq. (37) and K = 0 
from Eq. (36)) or calculated from the constraint equations (c = gwmliz/r and K,,‘). 

The results of this scheme are in excellent agreement with an analytic solution 
calculated using Eq. (51). (The difference is too small to be observed on the scale of 
Fig. 4.) The scheme is numerically stable. This stability depends on the temporal 
staggering. (See Fig. 2.) The outgoing wave boundary conditions enable the calcula- 
tions to be continued until the wave packet propagate out of the grid. 

Several variations of this scheme were tried. These include free as well as chopped 
evolution and include partially constrained schemes and different coordinate choices. 

Evolution Versus Constraint Equations 

The scheme contains more numerical noise when the constraint equations are 
replaced by evolution equations. However, the results are still close to the analytic 
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solution and to the numerical solution which is based on the constraint equations. 
The numerical noise on the boundary sometime leads to numerical instability in that 
region. 

Evolution of K,‘. There are no significant changes from a constrained solution. 
The difference in the metric functions between these solutions and the previous one 
cannot be observed on the scale of Fig. 4. The only observed difference is a non- 
vanishing K,’ near the axis, which in turn leads to nonvanishing stationary C energy 
density in that region. A measure of the accuracy is the deviation of K,‘(O, t) from 
K,@(O, t) [39]. When the extrinsic curvature is large, this difference is l-3 % of K,.‘(O, t). 
(This ratio increases when KrT(O, t) decreases at late times, but the magnitude of the 
difference remains the same throughout the rest of the calculations.) Another measure 
of the accuracy of this scheme is given by the deviation in the momentum constraint 
equation from zero. This deviation is shown in Fig. 5. There are three clear feature; 
the deviation does not grow after an initial period of fast increase (i.e., there is no 
instability). The deviation oscillates in space, and to some extent in time. The maximal 
value of this deviation is about 10 x1 of the maximal value of K:‘. 

Chopped K,.’ evolution. Results of chopped K,’ evolution are shown in Fig. 6. 
Deviations from zero in the momentum constraint equation are almost completely 
suppressed by calculation of the momentum constraint once every 100 time steps. This 
is accompanied by an improved behavior of K,.’ near the axis and by vanishing of the 
C energy density near the axis at late times. It is important to note that the constraint 
calculations do not introduce any discontinuity in K,.’ or in any other quantities (thus 
removing a serious objection to the chopped evolution scheme). 

FIG. 5. The deviation from the Y component of the momentum constraint equation in a partially 
constrained scheme when this constraint is not enforced. 
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(0) 
A (momentum constraint) 

(b) 

FIG. 6. Results of a K,’ chopped evolution scheme: (a) the deviations from the momentum 
constraint; (b) the extrinsic curvature component Kvr. 

Evolution of c = g,,lJzlr. Th e SC h eme contains more numerical noise when c is 
calculated from an evolution equation. While there are still no significant deviations 
in the evolution of the metric components the C energy density displays a small 
stationary C energy peak (See Fig. 7.) The deviation from the Hamiltonian constraint 
increases very rapidly near the axis at the beginning of the calculation (following the 
ingoing wave). At latter times, when this wave propagates outwards, it decreases 
slightly near the axis while at the exterior region it oscillates both in space and time. 
The relative deviation from the Hamiltonian constraint is much larger than that of the 
momentum constraint equation. Near the axis the deviation is of the same order of 
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FIG. 7. A partially constrained scheme in which the Hamiltonian constraint is not enforced: 
(a) the deviation from the Hamiltonian constraint equation; (b) the C energy density, 
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magnitude as the KjiKii term. This is in part due to temporal staggering. In spite of the 
growth of the deviation from Hamiltonian constraint near the axis, the difference 
between a and c on the axis remains less than 1O-3 throughout the calculation. 

A simple outgoing wave boundary condition is not adequate for c. This pheno- 
menon is a result of our coordinate choice and of the asymptotic behavior of 
cylindrical metric functions. It causes large ocsillations in c near the outer boundary. 
These are accompanied by a large deviation from the Hamiltonian constraint, which 
is not displayed in Fig. 7. However, mainly due to the outgoing nature of the boundary 
conditions these instability do not propagate inwards and the inner part of the solution 
remains remarkably good. 

Chopped c Evolution. A chopped c evolution has the same features of a chopped 
K,’ evolution. The constraint is imposed by calculations of c from the Hamiltonian 
constraint equation every 100 time steps. This is sufficient to suppress the growth of 
the deviation (see Fig. 8), and to wipe out the superfluous C energy density peaks. 
Again this is not accompanied by any discontinuity in c or in the other variables. 

Free Evolution. Evolution of K,.’ and c; the boundary conditions presented here 
are not good enough for this combination. The instability that was observed on the 
boundary when only c was evolved causes now oscillations in K,.’ and a global in- 
stability. This behavior could not be suppressed by a chopped evolution. However, 
this is basically a boundary problem and the interior part of the solution is not affected 
by this instability. This boundary problem will, probably, disappear in an asympto- 
tically flat configuaration. A reasonable solution can still be calculated as long as the 

A (hamiltonion cons1romtl 

FIG. 8. The deviation from the Hamiltonian constraint in a chopped c evolution scheme. 



NUMERICAL CODES FOR CGR SYSTEMS 275 

outgoing wave does not reach the outer boundary. Centrella [32] who used a free- 
evolution scheme for plane symmetric periodic configuration did not encounter this 
problem. 

Coordinate Choices 

The different coordinate conditions change the structure of the geometric equations. 
For example when /I = 0, the “geometric flux” terms disappear from the geometric 
equations, and when canonical coordinates are used, the second derivatives of the 
metric functions disappear from the Hamiltonian constraint equation. 

Results of wave propagation with /3 = 0 are shown in Fig. 9. (On the initial slice 
a = b and the initial perturbation is given by Eq. (53).) The deviation from an exact 
solution are, as with the previous schemes, too small to be observed on the scale of 
Fig. 9. The scheme is constrained, but not fully constrained-there are three evolution 
equations while only two are really essential. Since K and 6 vanish the determinant 
of the three metric, @)g, should be conserved. (In principle, this could be used in order 
to evaluate algebraically one of the metric functions and to construct a fully constrai- 
ned scheme.) The value of c3)g is conserved within l/4 % (compare to [41]). 

The conservation of the metric t3)g makes it impossible (unless f3)g = 1 on the 
initial slice) for the metric to become a flat cylindrical metric after the wave packets 
have propagated. The region near the axis becomes flat but it is described in curved 
coordinates. This example manifests the need to consider the expected form of the 
final solution and not just simply when the coordinate choice is made. See [39] for 
discussion of a similar behavior for Brill Waves. 

A comparison of Figs. 9 and 4 shows that for g,, = g,, the wavelike behavior 
appear in g,,(=g,,), while g,, describes the overall curvature. In this case the wavelike 
behavior appears in g,, . 

(a) (b) 

FIG. 9. A partially constrained scheme with fi = 0: (a) the metric function ‘D = gvrW; @) the 
metric function I = g,.l/a. 
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Results of calculations using canonical coordinates (bc = I) are shown in Fig. 10. 
This is again a fully constrained scheme; the Hamiltonian constraint is solved for a 
(using fourth-order Runge-Kutta integration) and c is calculated from an evolution 
equation. The initial perturbation is expressed as a perturbation in C: 

c(r, 0) = 1 + Corz exp (- ed*j . 

Like the (a = b) scheme, and unlike the j3 = 0 scheme the final metric is a flat, 
cylindrical metric. On the other hand, wavelike behavior appears now both in a and 
in c. Actually a and c have very similar behavior. 

(Cl 

FIG. 10. A fully constrained scheme for Einstein-Rosen waves, using a canonical coordinate 
(8s = 1): (a) the metric function a = g,,‘/l; (b) the metric function o = gBpl/*/r; (c) the extrinsic 
curvature component Kw+‘, (d) the C energy density. 
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The minimal shear [Eq. (36)] solution was very similar to the p = 0 one. The shift 
vector remained very small and it had no noticeable effects on the behavior of any of 
the metric functions. 

Geometric Artljicial Viscosity 

Unlike hydrodynamics, there is no physical motivation for introducing a geometric 
artificial viscosity. However, artificial geometric viscosity was found useful in some 
recent calculations [3]. From the previous discussion it is clear that there was no 
numerical need to introduce such a viscosity, in order to stabilize the numerical 
scheme. Our finite-difference form of the flux terms introduces a very small second 
derivative term which could be looked at as an artificial viscosity. However, unlike the 
hydrodynamic artificial viscosity this term vanishes as dx + 0. In addition in all 
studied cases this additional term was extremely small. Furthermore, when the coor- 
dinate condition ,5 = 0 was used these terms vanished identically. 

The direct effects of an artificial viscosity on the geometry was studied by addition 
of the terms vK,O’ and vK,7’ to Eqs. (22) and (24) the evolution equations for K,Q’ and 
K,.‘. A viscosity coefficient, v, as small as 0.05 led within 100 time steps to a 11% 
decrease in the C energy of the wave packet. This energy decreased further by 23 % 
after 200 time steps. 

Strong geometric artificial viscosity can serve to construct an outer layer in which 
waves will be dumped, without reflection. This can serve as an alternative outer 
boundary condition. However, in view of the success of the outgoing wave boundary 
condition this method was not tried in actual calculation. 

V. MATTER COLLAPSE 

The numerical methods which have been tested for the vacuum case are used for 
solution of a collapsing cylinder problems. Following the success in the vacuum case 
a fully constrained evolution scheme is used in most of these calculations. The coor- 
dinates (which are part of the fully constrained structure) are either isothermal (a = b) 
or “canonical”, (be = 1). The matter can be rotating. Then /3@, i.e., the shift vector 
component in the y direction, is introduced according to Eq. (17) so that the three 
metric remains diagonal. The new nonvanishing extrinsic curvature component KQT 
is evaluated from the momentum constraint equation [Eq. (2591. 

The initial configurations for the collapse are static Newtonian cylinders. The 
metric functions have the form 

ds2 = (1 + 2@) dt2 - (I - 2@)(dr2 + dz2 + r2dy2) (55) 

for isothermal coordinates, and 

ds2 = ( 1 - 2@) dt 2 - (1 - 2@)(dr2 + r2drp2) - (1 + 2@) dz2 (56) 
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for canonical coordinates, where Cp is the Newtonian potential: 

The initial density profile is arbitrary and it is usually chosen to be Gaussian, the 
pressure (i.e., the internal energy) is chosen so that the configuration is in hydrostatic 
equilibrium. The collapse is induced by a decrease in the internal energy. 

Results of such collapse are shown in Fig. 11. An outgoing pulse of C energy 
which begins during the bounce is clearly seen in this figure. Similar behavior is 

(b) 

P I 

(d) 

FIG. 11. The C energy density in a constrained evolution of collapsing matter cylinder using 
isothermal coordinates. The C energy density includes both rest mass energy density and gravitational 
wave energy density: (a) A typical geometric variable: K,.?; (b) density variations; (c) the density for 
p < 2.5 x 10-t; (d) the C energy density for U less than 2.5 x lo-‘. Note the two (gravitational 
wave) pulses which do not appear on the p graph. 
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observed when the same calculations were repeated using canonical coordinates. The 
physical implications of these results were presented elsewhere [30, 341. 

In contrast to the vacuum case in which both constrained and nonconstrained 
scheme performed satisfactory, only the fully constrained scheme worked well in this 
problem. The boundary problems which appeared in the vacuum case were enhanced, 
the deviation from the constraint equation diverged near the boundary, and the 
solution could not continued. A chopped evolution scheme had the same problem. It 
is not clear whether this instability is associated only with the boundary condition or 
it is a general feature of this scheme. 

A numerical-Lagrangian scheme (V, = P”) successfully followed the collpase of 
the matter. However, the scheme becomes unstable when an outgoing gravitational 
wave emerged. The numerical grid points in the exterior region become too widely 
spaced and the propagation of the outgoing gravitational waves could not be traced. 

VI. COSMOLOGY 

The standard Friedman metric can be written as 

ds2 = dT2 - G2(T)[dR2/(1 - kR”) + R2(d0 + sin 0 dy2)]. (58) 

A Friedman Universe can also be expressed in a cylindrical coordinate. The trans- 
formation [35] 

& = (1 - /&2)-l, 

_ = cos B(1 - kR2)-l (1 - kR2)-l12, 
3R 

8Z 

2= 
-i?(l - kR”)-l (I - kR2)‘j2, 

where 

and 

R = R sin 8 (62) 

dT 
2i=N 

reduces Eq. (58) to line element equivalent to Eq. (18) with isotropic coordinates 

ds2 = a’dt2 - G2[(1 - kW2)(dr2 + dz2) + R2dv2] (64) 

for a positive k 0 < r < r,, , with R(r,,) = k112, while - 03 =C z < CO and 0 < y < 2~ 
always. 
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(0) 

(b) 

FIG. 12. Evolution of two cylindrical slices of Friedmann Universes matched together: (a) p/K’; 
(b) propagation of an initial gravitational wave perturbation as displayed by K&K. Note the small 
amount of reflected waves from the outer boundary. 
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A constant t hypersurface has a constant extrinsic curvature: 

K,’ = K,” = K,” = ; K = - GG . 

Evolution of a homogeneous Friedmann Universe can be followed, trivially using 
the cylindrical scheme. Clearly, we are doing too much work since G which is indepen- 
dent of r can be calculated from a simple ordinary differentialequation. Suchcalculation 
can serve to estimate the accuracy of the scheme. 

While the scheme is stable for expanding solutions (an open, k = 0, universe was 
calculated accurately until the density dropped by a factor of 103 it becomes, not 
unexpectedly, unstable for a contracting solution. For example a close universe with 
k = 0.1 and initial density p = 0.42 expands until the density is p = 0.16 and contracts 
again. The solution is accurate to within 1 y0 when the contracting universe returns to 
its initial (p = 0.43) density. The solution is accurate within 5 % when p = 2.1, and 
within 20 ‘A when p = 21, shortly before the calculation breaks down. 

From a numerical point of view a solution of an expanding Universe problem was, 
generally, easier than the collapsing cylinder problem of the previous section. The 
pressure in the expanding matter falls faster than the density and after a short initial 
period the matter behaves like dust. There is however a new conceptual problem 
associated with measurement and detection of gravitational waves in a nonvacuum 
background. 

Results of calculations of cylindrical perturbations on an expanding Friedmann 
Universe background are shown in Fig. 12. A constant K slicing is used in this 
calculation. It is interesting that while this slicing is very useful in the numerical 
calculation and when comparing the results with evolution of a Friedmann Universe, 
it imposes very strong restrictions on the initial value conditions. For example, it was 
impossible to find an initial constant K slice with a constant density and with a 
localized gravitational perturbation. Similarly, continuous matching between two 
Friedmann Universes was found to be possible only when the difference in k between 
the two solutions was small. 

VII. CONCLUSIONS 

The success of the numerical calculations presented here manifest the ability to 
achieve a very accurate numerical solution for the Einstein equations. The high 
precision (better than 0.5 %) in which the C energy is conserved during propagation 
of gravitational waves in vacuum and the very small differences between the exact 
(analytic) solution and results from fully constrained and partially constrained scheme 
serve as an excellent measure of the accuracy achieved. 

There is a clear advantage to the fully constrained schemes. They contain less 
numerical noise and in none of the problems studied did I run into difficulties. These 
schemes involve a choice of a simplifying coordinate condition. It was shown that 
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while the main criterion in choosing the relevant coordinate conditions is the simplifi- 
cation of the numerical scheme, the structure of the expected final configuration 
should be anticipated to see if it could be expressed in a natural way in these coor- 
dinates. 

The existence of an overdetermined system of equations enables us to use the de- 
viation from the constraints as a measure of the accuracy of the solution in uncon- 
strained or partially constrained schemes. There is no equivalent measure for a 
constrained solution, apart from solving the same problem using a free-evolution 
scheme and comparing the results. This procedure is needed to ensure that the con- 
strained solution is not drifting from the exact one. When comparisons are made, it 
is found that such divergences do not occur. Another possible associated problem 
in a constrained scheme is propagation of signals faster than the speed of light. (This 
is due to the excessive usage of elliptic equations in such schemes.) This problem did 
not appear in any solution. 

As expected a simple Lagrangian scheme failed for a collapsing cylindrical matter 
configuration. The coordinates (or the grid points) which followed the matter motion 
were not suitable for following the propagation of gravitational waves, and the scheme 
becomes unstable after a gravitational wave pulse was generated. 

Almost all the basic problems associated with the solution of Einstein’s equations 
are presented in these cylindrical examples. While it is not obvious that a numerical 
method which was successful in one-dimensional problems will be good for higher 
dimensions, it is clear that methods which fail in one dimension will fail in higher 
dimensions as well. 
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